A mixed approach and a distribution-free multiple imputation technique for the estimation of a multivariate probit model with missing values.
نویسندگان
چکیده
In the present paper a mixed generalized estimating/pseudo-score equations (GEPSE) approach together with a distribution-free multiple imputation technique is proposed for the estimation of regression and correlation structure parameters of multivariate probit models with missing values for an ordered categorical time-invariant variable. Furthermore, a generalization of the squared trace correlation (RT2) for multivariate probit models, denoted by pseudo-RT2, is proposed. A simulation study was conducted, simulating a probit model with an equicorrelation structure in the errors of an underlying regression model and using two different missing mechanisms. For a low 'true' correlation the difference between the GEPSE, a generalized estimating equations (GEE) and a maximum likelihood (ML) estimator were negligible. For a high 'true' correlation the GEPSE estimator turned out to be more efficient than the GEE and very efficient relative to the ML estimator. Furthermore, the pseudo-RT2 was close to RT2 of the underlying linear model. The mixed approach is illustrated using a psychiatric data set of depressive in-patients. The results of this analysis suggest that the depression score at discharge from a psychiatric hospital and the occurrence of stressful life events seem to increase the probability of having an episode of major depression within a one-year interval after discharge. Furthermore, the correlation structure points to short-time effects on having or not having a depressive episode, not accounted for in the systematic part of the regression model.
منابع مشابه
An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods
Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...
متن کاملAccuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)
Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...
متن کاملچند رویکرد برخورد با مقادیر گمشده متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی بالینی
Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...
متن کاملPerformance evaluation of different estimation methods for missing rainfall data
There are numerous methods to estimate missing values of which some are used depending on the data type and regional climatic characteristics. In this research, part of the monthly precipitation data in Sarab synoptic station, east Azerbaijan province, Iran was randomly considered missing values. In order to study the effectiveness of various methods to estimate missing data, by seven classic s...
متن کاملLikelihood-based Inference with Nonignorable Missing Responses and Covariates in Models for Discrete Longitudinal Data
We propose methods for estimating parameters in two types of models for discrete longitudinal data in the presence of nonignorable missing responses and covariates. We first present the generalized linear model with random effects, also known as the generalized linear mixed model. We specify a missing data mechanism and a missing covariate distribution and incorporate them into the complete dat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The British journal of mathematical and statistical psychology
دوره 52 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1999